Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38730703

RESUMO

Plant-derived polyphenols are bioactive compounds with potential health-promoting properties including antioxidant, anti-inflammatory, and anticancer activity. However, their beneficial effects and biomedical applications may be limited due to their low bioavailability. In the present study, we have considered a microencapsulation-based drug delivery system to investigate the anticancer effects of polyphenol-rich (apigenin, caffeic acid, and luteolin) fractions, extracted from a cereal crop pearl millet (Pennisetum glaucum), using three phenotypically different cellular models of breast cancer in vitro, namely triple negative HCC1806, ER-positive HCC1428, and HER2-positive AU565 cells. Encapsulated polyphenolic extract induced apoptotic cell death in breast cancer cells with different receptor status, whereas it was ineffective against non-tumorigenic MCF10F cells. Encapsulated polyphenolic extract was also found to be cytotoxic against drug-resistant doxorubicin-induced senescent breast cancer cells that were accompanied by increased levels of apoptotic and necrotic markers, cell cycle inhibitor p21 and proinflammatory cytokine IL8. Furthermore, diverse responses to the stimulation with encapsulated polyphenolic extract in senescent breast cancer cells were observed, as in the encapsulated polyphenolic extract-treated non-proliferating AU565 cells, the autophagic pathway, here cytotoxic autophagy, was also induced, as judged by elevated levels of beclin-1 and LC3b. We show for the first time the anti-breast cancer activity of encapsulated polyphenolic extract of pearl millet and postulate that microencapsulation may be a useful approach for potentiating the anticancer effects of phytochemicals with limited bioavailability.

2.
Biomater Adv ; 153: 213582, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37591178

RESUMO

The anticancer potential of quercetin (Q), a plant-derived flavonoid, and underlining molecular mechanisms are widely documented in cellular models in vitro. However, biomedical applications of Q are limited due to its low bioavailability and hydrophilicity. In the present study, the electrospinning approach was used to obtain polylactide (PLA) and PLA and polyethylene oxide (PEO)-based micro- and nanofibers containing Q, namely PLA/Q and PLA/PEO/Q, respectively, in a form of non-woven fabrics. The structure and physico-chemical properties of Q-loaded fibers were characterized by scanning electron and atomic force microscopy (SEM and AFM), X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), goniometry and FTIR and Raman spectroscopy. The anticancer action of PLA/Q and PLA/PEO/Q was revealed using two types of cancer and nine cell lines, namely osteosarcoma (MG-63, U-2 OS, SaOS-2 cells) and breast cancer (SK-BR-3, MCF-7, MDA-MB-231, MDA-MB-468, Hs 578T, and BT-20 cells). The anticancer activity of Q-loaded fibers was more pronounced than the action of free Q. PLA/Q and PLA/PEO/Q promoted cell cycle arrest, oxidative stress and apoptotic cell death that was not overcome by heat shock protein (HSP)-mediated adaptive response. PLA/Q and PLA/PEO/Q were biocompatible and safe, as judged by in vitro testing using normal fibroblasts. We postulate that PLA/Q and PLA/PEO/Q with Q releasing activity can be considered as a novel and more efficient micro- and nano-system to deliver Q and eliminate phenotypically different cancer cells.


Assuntos
Neoplasias Ósseas , Quercetina , Humanos , Quercetina/farmacologia , Flavonoides , Apoptose , Disponibilidade Biológica
3.
Sci Rep ; 13(1): 14148, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644130

RESUMO

Photocatalytic degradation is a promising method for removing persistent organic pollutants from water because of its low cost (see solar-driven photocatalysis), high mineralisation of pollutants, and low environmental impact. Photocatalysts based on transition metal dichalcogenides (TMDs) have recently attracting high scientific interest due to their unique electrical, mechanical, and optical properties. A MoS2 photocatalyst of the layered structure was managed to photodegrade methylene blue (MB) under visible light irradiation. The catalyst was thoroughly characterised using SEM, AFM, powder XRD, UV-Vis, Raman, and XPS measurements. The photocatalytic degradation of the MB solution was conducted under the following conditions: (i) reductive and (ii) oxidative. The impact of optical and electronic properties, and the MoS2-MB interaction on photocatalytic activity, was discussed. The apparent rate constants (kapp) of degradation were 3.7 × 10-3; 7.7 × 10-3; 81.7 × 10-3 min-1 for photolysis, oxidative photocatalysis, and reductive photocatalysis. Comparison of the degradation efficiency of MB in reductive and oxidative processes indicates the important role of the reaction with the surface electron. In the oxidation process, oxygen reacts with an electron to form a superoxide anion radical involved in further transformations of the dye, whereas, in the reduction process, the addition of an electron destabilises the chromophore ring and leads to its rupture.

4.
Materials (Basel) ; 16(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37374563

RESUMO

BACKGROUND: Advanced Oxidation Processes (AOPs) are the water treatment techniques that are commonly used forthe decomposition of the non-biodegradable organic pollutants. However, some pollutants are electron deficient and thus resistant to attack by reactive oxygen species (e.g., polyhalogenated compounds) but they may be degraded under reductive conditions. Therefore, reductive methods are alternative or supplementary methods to the well-known oxidative degradation ones. METHODS: In this paper, the degradation of 4,4'-isopropylidenebis(2,6-dibromophenol) (TBBPA, tetrabromobisphenol A) using two Fe3O4 magnetic photocatalyst (F1 and F2) is presented. The morphological, structural and surface properties of catalysts were studied. Their catalytic efficiency was evaluated based on reactions under reductive and oxidative conditions. Quantum chemical calculations were used to analyse early steps of degradation mechanism. RESULTS: The studied photocatalytic degradation reactions undergo pseudo-first order kinetics. The photocatalytic reduction process follows the Eley-Rideal mechanism rather than the commonly used Langmuir-Hinshelwood mechanism. CONCLUSIONS: The study confirms that both magnetic photocatalyst are effective and assure reductive degradation of TBBPA.

5.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903083

RESUMO

We demonstrate strain-balanced InAs/AlSb type-II superlattices (T2SL) grown on GaSb substrates employing two kinds of interfaces (IFs): AlAs-like IF and InSb-like IF. The structures are obtained by molecular beam epitaxy (MBE) for effective strain management, simplified growth scheme, improved material crystalline quality, and improved surface quality. The minimal strain T2SL versus GaSb substrate can be achieved by a special shutters sequence during MBE growth that leads to the formation of both interfaces. The obtained minimal mismatches of the lattice constants is smaller than that reported in the literature. The in-plane compressive strain of 60-period InAs/AlSb T2SL 7ML/6ML and 6ML/5ML was completely balanced by the applied IFs, which is confirmed by the HRXRD measurements. The results of the Raman spectroscopy (measured along the direction of growth) and surface analyses (AFM and Nomarski microscopy) of the investigated structures are also presented. Such InAs/AlSb T2SL can be used as material for a detector in the MIR range and, e.g., as a bottom n-contact layer as a relaxation region for a tuned interband cascade infrared photodetector.

6.
RSC Adv ; 12(42): 27396-27410, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36276011

RESUMO

Multipurpose Fe3O4@APTES-Ag heterostructures for mutual heat generation, SERS probing, and antimicrobial activity were fabricated using a three-step process. Silver metallic particles were precipitated on a thin silica shell that served as an interlayer with Fe3O4 nanocubes. The structural properties were studied by means of the powder X-ray diffraction technique, and selected area electron diffraction. Particle size, distribution, and morphology were evaluated using transmission electron microscopy, while element mapping was performed using the STEM-EDS technique. The presence of the silica shell and the effectiveness of the Ag reduction were checked by FTIR-ATR spectroscopy. The heat generation ability was studied by using AMF and NIR contactless external stimulations working separately and simultaneously. We demonstrated that the dual mode stimulation leads to a SAR (specific absorption rate) of 1000 W g-1 with the predominant role of the mechanism associated with the light interaction. The SERS effect was recorded with the use of the R6G standard molecule showing high capability of the heterostructures for Raman signal augmentation. Fe3O4 nanocubes decorated with Ag particles have shown antibacterial activity against P. aeruginosa. The Fe3O4@APTES-Ag presents promising potential as a multipurpose platform for biological applications ranging from photomagnetic therapies, to analytical probes exploiting the SERS effect and antibacterial activity.

7.
Molecules ; 26(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671817

RESUMO

Early detection of the most common pediatric neoplasm, B-cell precursor lymphoblastic leukemia (BCP-ALL), is challenging and requires invasive bone marrow biopsies. The purpose of this study was to establish new biomarkers for early screening to detect pediatric leukemia. In this small cohort study, Fourier transform infrared (FTIR) spectra were obtained from blood sera of 10 patients with BCP-ALL and were compared with the control samples from 10 children with some conditions other than neoplasm. Using various analytical approaches, including a new physical model, some significant differences were observable. The most important include: the different peak area ratio 2965/1645 cm-1 (p = 0.002); the lower average percentage of both ß-sheet and ß-turn protein structures in the sera of BCP-ALL patients (p = 0.03); an AdaBoost-based predictive model for classifying healthy vs. BCP-ALL patients with 85% accuracy; and the phase shift of the first derivative in the spectral range 1050-1042 cm-1 correlating with white blood cell (WBC) and blast cell count in BCP-ALL patients contrary to the samples obtained from healthy controls. Although verification in larger groups of patients will be necessary, these promising results suggest that FTIR spectroscopy may have future potential for the early screening of BCP-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Adolescente , Medula Óssea/patologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Proteínas de Neoplasias/sangue , Proteínas de Neoplasias/química , Leucemia-Linfoma Linfoblástico de Células Precursoras B/sangue , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Anal Chim Acta ; 1143: 201-209, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33384118

RESUMO

Development of artificial enzymes, including nanozymes as an alternative for non-stable and expensive natural enzymes, is a booming field of modern Biosensorics and Biofuel Technology. In this study, we describe fabrication and characterization of sensitive biosensors for the detection of ethanol and glucose based on new micro/nanocomposite electrodes with peroxidase-like activity (nanozyme) coupled with microbial oxidases: alcohol oxidase (AOX) and glucose oxidase (GOX). The nanozyme was synthesized by modification of carbon microfibers (CF) by hemin (H) and gold (Au) nanoparticles. The formation of gold nanoparticles on the surface of hemin-modified carbon microfibers has been confirmed by the UV-Vis and X-ray spectroscopy as well by the SEM analysis. Compared to hemin-only modified electrodes, the resulting micro/nanocomposite CF-H-Au electrodes exhibit a higher specific catalytic activity and a better affinity for H2O2 in solution. The H2O2-sensitive CF-H-Au-modified electrodes showed a higher sensitivity (1.3-2.6-fold) compared with the nearest carbon-derived analogs and were used for the construction of highly sensitive ethanol and glucose biosensors. To eliminate diffusion limitation for substrates, AOX or GOX were fixed on the CF-H-Au-modified electrodes using a highly porous Nafion membrane. The main biosensors' characteristics have been investigated. The developed biosensors were tested for ethanol and glucose analysis in the real samples of both grape must and wine. The results are in good agreement with the results obtained using enzymatic kits as reference approaches.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanocompostos , Eletrodos , Enzimas Imobilizadas , Etanol , Glucose , Glucose Oxidase , Ouro , Peróxido de Hidrogênio , Oxirredutases , Peroxidases
9.
J Med Phys ; 46(4): 253-262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35261495

RESUMO

Purpose: In this study, we hypothesize that exposure of adipose tissue-mesenchymal stem cells (AT-MSCs) to electromagnetic field (EMF) may impact adipose stem cells' micromolecular structure (analyzed using Fourier transform infrared spectroscopy [FTIR]). Materials and Methods: The AT-MSCs were exposed to continuous vertically applied sinusoidal EMF with a frequency of 50 Hz and a flux density of 1.5 mT for 24, 48, and 72 h. After an appropriate time (24, 48, 72 h) cells were washed with PBS, scrubbed, and immediately taken into FTIR analyses. Results: EMFs affect AT-MSCs. The greatest differences were in the range of nucleic acids and proteins in the fingerprint region which occurred after 24 and 48 h of EMF exposure. However, in the case of 72 h of EMF exposure, no significant differences were noticed in the FTIR spectra towards the control. Conclusions: FTIR spectra show differences between samples under the influence of EMF before they will be manifested at the morphological level. The largest differences in the range of nucleic acids and proteins in the fingerprint region occurred at 24 and 48 h of EMF exposure. That means it was during the first 48 h after EMF exposure a great number of dynamic changes occurred. However, in the case of AT-MSCs in 72 h EMF and 72 h control, no significant differences were noted in the FTIR spectra, which means that the chemical composition in these two cases is similar. EMF is not neutral for stem cells, especially in the in the first hours of interaction (24 h, 48 h).

10.
Mater Sci Eng C Mater Biol Appl ; 109: 110570, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228922

RESUMO

In this study, we describe the fabrication of sensitive biosensor for the detection of phenolic substrates using laccase immobilized onto two types of microporous carbon fibers (CFs). The main characteristics of microporous CFs used for preparation of biosensors are given. Two CFs were characterized by different specific surface area, CFA (<1 m2·g-1) and CFB (1448 m2·g-1), but with comparable size of the micropores estimated by positron annihilation lifetime spectroscopy. The structural analysis was shown that CFA is formed by thin interwoven fibers forming a highly porous structure, as well as CFB - by granular formations with uneven edges that shape a cellulose membrane of lower porosity. The results of amperometric analysis revealed that the laccase-bound CFs possesses better electrochemical behavior for laccase than non-modified rod carbon electrodes (control). Using chronoamperometric analysis, the operational parameters of the CFs-modified bioelectrodes were compared to control bioelectrodes. The bioelectrodes based on CFs have demonstrated 2.4-2.7 folds enhanced maximal current at substrate saturation (Imax) values, 1.2-1.4 folds increased sensitivity and twice wide linearity compared with control bioelectrodes. The sensitivity of the developed CFs-based bioelectrodes was improved compared with the laccase-bound electrodes, described in literature. The developed biosensor was tested for catechol analysis in the real communal wastewater sample.


Assuntos
Técnicas Biossensoriais , Carbono/química , Catecóis/análise , Técnicas Eletroquímicas , Proteínas Fúngicas/química , Lacase/química , Polyporaceae/enzimologia , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...